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Deep matrix factorization improves prediction of
human circRNA-disease associations

Chengqian Lu, Min Zeng, Fuhao Zhang, Fang-Xiang Wu, Min Li, and Jianxin Wang*

Abstract—In recent years, more and more evidence indicates
that circular RNAs (circRNAs) with covalently closed loop play
various roles in biological processes. Dysregulation and mutation
of circRNAs may be implicated in diseases. Due to its stable
structure and resistance to degradation, circRNAs provide great
potential to be diagnostic biomarkers. Therefore, predicting
circRNA-disease associations is helpful in disease diagnosis.
However, there are few experimentally validated associations
between circRNAs and diseases. Although several computational
methods have been proposed, precisely representing underlying
features and grasping the complex structures of data are still
challenging. In this paper, we design a new method, called DMFC-
DA (Deep Matrix Factorization CircRNA-Disease Association),
to infer potential circRNA-disease associations. DMFCDA takes
both explicit and implicit feedback into account. Then, it uses a
projection layer to automatically learn latent representations of
circRNAs and diseases. With multi-layer neural networks, DM-
FCDA can model the non-linear associations to grasp the complex
structure of data. We assess the performance of DMFCDA using
leave-one cross-validation and 5-fold cross-validation on two
datasets. Computational results show that DMFCDA efficiently
infers circRNA-disease associations according to AUC values,
the percentage of precisely retrieved associations in various top
ranks, and statistical comparison. We also conduct case studies
to evaluate DMFCDA. All results show that DMFCDA provides
accurate predictions.

Index Terms—Circular RNA, Disease, Deep Matrix Factoriza-
tion.

I. INTRODUCTION

DERIVED from back-spliced precursor mRNAs, circular
RNAs (circRNAs) with covalently closed loop are spe-

cific forms of single-stranded endogenous non-coding RNAs
[1], [2]. Discovered in an electron microscopy-based research
of viroids [3], circRNAs were once assumed to be aberrant
resultants of incorrect or erratic RNA splicing due to their
low levels of expression [4]. Recent years, accumulating
evidences show that circRNAs have been identified in diverse
biological processes [5]. According to their locations, they
are categorized as intronic circRNAs, intergenic circRNAs,
exon-intron circRNAs and exonic circRNAs [6]. In contrast
to linear RNAs, circRNAs are more stable and resistant to
exoribonucleases lacking the terminal structures (e.g., 3’ poly
A tail or 5’ cap structure), consequently escaping normal
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RNA degradation [7]. Therefore, the abundance, multifari-
ousness, and conservation of circRNAs signify that at least
some circRNAs will perform biological functions. To date,
it has been proved that circRNAs serve as intermediates in
RNA processing reactions, regulators of transcription, miRNA
sponges [8].

Partaking in a diversity of organic processes, the dysreg-
ulation and mutation of circRNAs may give rise to the pro-
gression of diseases, including atherosclerosis [9], Alzheimer’s
disease [10], [11], cancers [12] and so on. For instance, circ-
ZNF609 involved in tumorigenesis acts as a vying endoge-
nous sponge and regulates translational repression of AKT3
in Hirschsprung’s disease [13]. CircRNA hsa circ 0000096
changes cell proliferation and metastasis of gastric cancer
through suppressing the expression levels of cyclin-dependent
kinase 6, matrix metalloproteinase (MMP)-2 and MMP-9
[14]. On account of tissue-specific expression patterns, highly
conserved characteristics and various biological roles, circR-
NAs provide great potential to be diagnostic biomarkers and
therapeutic targets of diseases. However, molecular mecha-
nisms and functions of circRNAs during diseases initiation
and progression are still far from understanding. Meanwhile,
biological experiments to validate the relationships between
circRNAs and diseases are costly and time-consuming. Hence,
designing computational models to offer probable associations
is not beneficial for learning biological mechanisms, but also
for disease diagnosis.

In recent past, several computational methods, divided into
two categories, were proposed to predict circRNA-disease
associations. The first category applies the network-based
method to infer potential associations. Fan et al. utilized
the KATZ method to compute the possibility of associations
between diseases and circRNAs in the constructed heteroge-
neous network, which is based on circRNA expression pro-
files, Gaussian interaction profile kernel similarity and disease
phenotype similarity [15]. However, there are few recorded
expression profiles of circRNAs that makes the constructed
network sparse and impedes the prediction. Lei et al. designed
a path weighted model to infer associations on the basis
of the heterogeneous network, composed of circRNA-disease
network, circRNA similarity network and disease similarity
network [16]. Lack of known circRNA-related information, it
is difficult to integrate various knowledge into a heterogeneous
network in a proper way. The second category uses machine
learning model. Yan et al. developed a regularized least
squares method to predict associations based on Kronecker
product kernel. It suffers from determining a proper number
of neighbors, which is used to calculate an initial association
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score [17]. Actually, matrix factorization methods have been
successfully applied in predicting biomolecular associations.
Based on the expression profiles of lncRNAs and mRNAs in
ovarian cancer, Xiao et al. proposed a joint orthogonal non-
negative matrix factorization to distinguish lncRNA-mRNA
co-expression models [18]. Pan et al. used a self-weighted
multi-kernel learning framework for recommending miRNA-
disease associations [19]. Xiao et al. presented a non-negative
matrix factorization with the graph regularization on hetero-
geneous omics data to extrapolate potential miRNA-disease
associations [20]. Zitnik et al. designed a multi-level hierarchy
to detect associations among diseases by means of fusing
system biological data [21]. Fu et al. fused heterogeneous
data to discover latent lncRNA-disease associations based on
a matrix tri-factorization framework [22]. Zitnik et al. offered
a collective matrix factorization to elicit different semantics
and discover modules of gene-disease objects by fusing multi-
modal biological data [23]. Reformulating association matrix
by the constructed circRNA and disease similarity, Wei et al.
proposed a graph regularization non-negative matrix factoriza-
tion algorithm to predict associations [24]. After constructing
a heterogeneous circRNA-disease bilayer network, Xiao et
al. used a weighted dual-manifold regularization low-rank
approximation algorithm to recommender associations [25].
Nonetheless, the performance of the model depended upon
the hand-crafted feature extractors. In the traditional matrix
factorization model, latent factors are manual features that are
not very consistent with the model. In addition, associations
are produced by a linear multiplication that is not sufficient to
seize non-linear structures of data.

Since the great breakthrough in 2012 ImageNet competition
[26], deep learning has been successfully applied in different
domains including natural language processing, visual object
recognition and bioinformatics [27]–[29]. Consisting of mul-
tiple neural layers, deep learning models can automatically
grasp data representations through multiple levels of abstrac-
tion [30]. Inspired by the application of recommender system
methods in association prediction [31], we propose a deep
matrix factorization model (DMFCDA) to recommend po-
tential circRNAs for investigated diseases. Implicit feedback,
a.k.a. unknown associations, could improve the performance
of prediction [32]. In this study, a deep learning framework
is proposed to predict the potential cricRNA-disease associa-
tions. Specifically, we construct a cricRNA-disease matrix with
all explicit and implicit feedback. A project layer is applied
to capture dense non-linear representations of circRNAs and
diseases. Dense representations are automatically learned and
consistent with the model. Instead of the linear multiplication
of latent features in the conventional matrix factorization, we
utilize multi-layer neural networks to grasp complex associ-
ations. Experimental results imply that DMFCDA performs
better than the-state-of-art computational methods.

II. MATERIALS AND METHODS

A. Data description

In this study, we make use of two datasets to evaluate the
effectiveness of DMFCDA. The first one is retrieved from

TABLE I
DETAILS OF DATASET

# of circRNAs # of diseases # of associations

Dataset1 556 80 619
Dataset2 632 89 744

CircR2Disease [33], including 739 associations between 676
circRNAs and 100 diseases. The second one is downloaded
from LncRNADisease v2.0 [34], including 1,004 associations
between 811 circRNAs and 112 diseases. Lack of standard
nomenclature, circRNAs with the same sequence were given
different names in different databases. In order to unify the
names of circRNAs, we refer to standard databases, like
circBase [35] and deepBase v2.0 [36]. We find sequences of
circRNAs from circBase and deepBase, and then uniformly
name circRNAs with the same sequence according to circBase.
For diseases, there is a naming confusion problem. We refer to
UMLS [37], OMIM [38] and NCBI, and find the description of
disease symptoms. Diseases with the same symptoms are uni-
formly named according to UMLS. After that, we delete all the
repeated associations and all the associations with unrecorded
circRNAs or diseases. At last, we get 619 associations between
556 circRNAs and 80 diseases for dataset1. In contrast to
dataset1, there are 76 added circRNAs, 9 added diseases and
125 added associations. For dataset2, we get 744 associations
between 632 circRNAs and 89 diseases. The details of the
dataset are shown in Table I.

B. Problem formulation

Let C = {c1, c2, c3, ..., cm} be the set of m circRNAs,
and D = {d1, d2, d3, ..., dn} be the set of n diseases. Let
A ∈ Rm×n be a circRNA-disease association matrix. If
the association between circRNA i and disease j has been
experimentally verified, Aij is 1; otherwise, then Aij is 0.

Aij =

{
1, if circRNA i is associatedwith disease j;
0, otherwise.

(1)

The problem of circRNA-disease association prediction is
to infer unknown associations based on observed associations.
It can be considered as a recommender system problem.
Matrix factorization methods successfully applied in recom-
mender systems can solve the problem. A matrix factorization
model maps both features of circRNAs and diseases to a
joint latent factor space of low-rank dimensionality in this
system. Besides, brand-new recommendations could be made
for circRNAs and diseases. Till now, limited associations are
already experimentally verified. Therefore, it is a challenge
to recommend circRNAs to the investigated diseases based
on a sparse association matrix. In our model, we concentrate
on the association matrix without importing extra biological
knowledge to solve the problem under the general situation.

C. Deep matrix factorization

With the successful application of Netflix Prize, it is found
that the preferences of users to movies are dominated by only
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a few latent factors of users and movies. Matrix factorization
(MF), the most popular model in the recommender system, is
based on the latent factor model [39]. MF intends to find latent
representations of users and movies, respectively, and utilizes
the inner product of the learned representations to approximate
the preference. Latent factors of users and movies in a shared
latent factor space of dimensionality d. More specifically, user
i is related to a vector ui, ui ∈ Rd, quantifying the extent to
which the user possesses positive or negative factors; movie j
is related to a vector vj , vj ∈ Rd, quantifying the extent to
which the movie possesses positive or negative factors. The
inner product uT

i vj approximates the observed rating rij of
user i on movie j.

In order to train the latent models, MF usually minimizes
a loss function L, made up of sum-of-squared-error terms
between the computed ratings and the real ratings and L2

regularized terms obviating the over-fitting problem as the
following:

L =
m∑
i

n∑
j

(rij − uT
i vj)

2 + λu

m∑
i

∥ui∥2 + λv

n∑
j

∥vj∥2,

(2)
where λu and λv are the parameters used to balance the
regularization term of users and items, respectively.

Enlightened by the previous work using neural networks
to matrix factorizations [32], we propose a deep matrix fac-
torization model, called DMFCDA. DMFCDA extends the
basic latent factor model for non-linear representations rather
than linear representations. The projection composed of feed-
forward neural networks maps raw representations including
explicit and implicit feedback to dense representations. Dense
representations are learned while optimizing the model. Be-
sides, DMFCDA approximates the associations with multi-
layer neural networks instead of the linear multiplication-inner
product for non-linear structures of data. There are three steps
in DMFCDA shown in Fig. 1. First, we extract row vectors or
column vectors as raw representation of circRNAs or diseases,
respectively. Each row vector or column vector contains asso-
ciation patterns for each circRNA or each disease, respectively.
Then, each circRNA ci is represented as a high-dimensional
vector of Ai∗, which corresponds to the associations of ith
circRNA with all diseases. Each disease dj is represented as a
high-dimensional vector of A∗j , which corresponds to the jth
disease’s associations with all circRNAs. In the association
matrix A, there are explicit feedback represented as 1s, and
implicit feedback represented as 0s. A value of 1 means that
the association is experimentally verified now, while value
of 0 means that the association is not verified so far, rather
than it does not exist. Only explicit feedback, a.k.a. observed
associations, are insufficient to make a good recommendation
[40]. Implicit feedback made up of some association patterns
can improve the performance [32], [41]. If the association is
unknown, we mark a zero as an implicit feedback. Explicit
and implicit feedback consist of vectors of circRNAs and
diseases. Secondly, we feed the raw representations into a
projection layer composed of three fully connected neural
networks to project feature vectors. Stimulated by the latent
factor model [42], we take use of a projection layer to
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Fig. 1. Overview of DMFCDA model architecture. The input consists of two
vectors, cricRNA i’s vector and disease j’s vector. These two vectors are raw
representations of circRNA i and disease j. They are fed into a projection
layer which consists of three fully connected layers. We concatenate the two
projected latent vectors as a new vector, and use it to feed two fully connected
layers. At last, we use sigmoid function to classify the label.

learn non-linear representations of circRNAs and diseases.
Formally, we use p and q to denote the input vectors of
circRNAs and diseases, respectively. In each fully connected
layer for circRNAs, Wp1,Wp2,Wp3 denote the weight ma-
trices, bp1, bp2, bp3 denote the bias terms, and Op1, Op2, Op3

denote the corresponding outputs. In each fully connected
layer for diseases, Wq1,Wq2,Wq3 denote the weight matrices,
bq1, bq2, bq3 denote the bias terms, and Oq1, Oq2, Oq3 denote
the corresponding outputs. We use the ReLU as the activation
function of hidden layers.

The outputs of the first fully connected layer can be calcu-
lated as:

Op1 = ReLU(Wp1p+ bp1) (3)
Oq1 = ReLU(Wq1q + bq1) (4)

The outputs of the second fully connected layer can be
calculated as:

Op2 = ReLU(Wp2Op1 + bp2) (5)
Oq2 = ReLU(Wq2Oq1 + bq2) (6)
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The outputs of the third fully connected layer can be
calculated as:

Op3 = ReLU(Wp3Op2 + bp3) (7)
Oq3 = ReLU(Wq3Oq2 + bq3) (8)

where Op3 and Oq3 are the latent feature vectors of circRNAs
and diseases. For the purpose of averting the overfitting
problem, we use the dropout on each fully connected layer.
We set the dropout rate to 0.005 as default.

Thirdly, we concatenate Op3 and Oq3 into a combined
vector, and feed it to two fully connected layers. At last,
we utilize sigmoid function to classify the label. Multi-layer
neural networks replace linear multiplications to seize non-
linear structures of data.

O4 = ReLU(W4 · Concatenate(Op3, Oq3) + b4) (9)
ŷ = sigmoid(ReLU(W5O4 + b5) (10)

where O4, W4 and b4 are the output, weight matrix and bias
of the fourth layers. W5 and b5 are the weight matrix and bias
of the fifth layer. ŷ is the predicted label.

We substitute the square loss function with a binary cross-
entropy loss function. A binary cross-entropy loss function
can evaluate the recoverability of explicit and implicit feed-
back rather than only explicit feedback. The loss functioin is
depicted as follows:

Loss = −
(∑

ylog(ŷ) + (1− y)log(1−ŷ)
)
+ λ(∥W∥2)

2

(11)

where y is the observed label, λ is the regularization coeffi-
cient, and ∥ W ∥2 is the L2 norm of weight matrix.

In the process of training, it is worth noting that the inter-
section of the two raw interaction representations is the true
label of the interaction between a circRNA and a disease. To
avoid using true labels in training and testing, prior knowledge
should be removed. The value of the intersection is masked
with 0. Then the true label is deleted from raw interaction
representations of a circRNA and a disease. Furthermore,
we take all observed interactions as positive samples and all
unknown associations as negative samples. The number of
negative samples is larger than the number of positive samples,
which results in the imbalanced problem. The imbalanced
data may mislead the model optimization. Thus, we randomly
sample some positive samples from all observed interactions
and select the same number of negative samples at each
batch. Such a sampling method is not biased to any class in
each training batch. This process is carried out to train the
model. Calculating the gradient dominates the computational
cost in each iteratior of DMFCDA. Based on the back-
propagation, the main operation of calculating the gradient
is matrix multiplication. The flop count of an m × n matrix
multiplying a n × r matrix is 2mnr. Thus, calculating the
gradient requires 4m (f1h1 + h1h2 + · · ·+ hkn) flops, where
f1 is the dimension of the input vector, k is the number of
hidden layers.

III. RESULTS AND DISCUSSIONS

In this section, we firstly introduce evaluation metrics to
assess the performance of DMFCDA. Secondly, we analyze
the effects of parameters in the model. Thirdly, we compare
the performance of DMFCDA with other methods. At last,
we conduct case studies to verify the effectiveness on breast
cancer and gastric cancer.

A. Evaluation metrics

To access the effectiveness of DMFCDA, we conduct leave-
one out cross validation (LOOCV) and 5-fold cross validation
(5-CV). In LOOCV, each positive sample is left out as the test
sample in turn. Other positive samples and the same amount
of randomly selected negative samples are considered as the
training samples. In 5-CV, we divide all the observed samples
into five folds. Each fold is considered as the test samples
in turn. Other left folds and the same amount of extracted
negative samples are considered as the training samples. After
calculating the probabilities of all test samples, we rank the
test samples by the probabilities in descending order. Then, we
figure out the true positive rate (TPR) and the false positive
rate (FPR) as follows:

TPR =
TP

TP + FN
(12)

where TP is the number of positive samples that are classified
correctly, and FN is the number of negative samples that are
classified incorrectly.

FPR =
FP

FP + TN
(13)

where FP is the number of negative samples that are classified
incorrectly, and TN is the number of negative samples that are
classified correctly.

TPR measures the proportion of actual positive samples
that are correctly identified. FPR measures the proportion of
actual negative samples that are incorrectly identified. The
receiver operating characteristic (ROC) curve is used to show
the predictive accuracy. The area under the ROC (AUC) is used
to measure the overall performance of the prediction methods.

In addition, the percentage of correctly retrieved associa-
tions in various top rank provides more actual guidance for
biologists. The higher the percentage is, the more accurate the
recommendation is. In this study, we take it as an important
metrics for assessing the efficiency.

B. Effects of parameters

1) Number of projection layers: For projecting raw repre-
sentation of circRNAs and diseases to dense representation,
we design a projection layer. The number of projection layers
plays an important role in learning feature vectors. We perform
the cross validation and grid search for the optimal number by
automatically training the model from 2 layers to 6 layers, in
steps of 1. After analyzing the effects of different numbers
of projection layers on two datasets, we set its value to 3 as
default. The detailed results are shown in Table II.
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TABLE II
NUMBER OF PROJECTION LAYERS

# of layers 2 3 4 5 6

AUC on dataset1 0.859 0.8679 0.857 0.825 0.818

AUC on dataset2 0.8824 0.8861 0.8843 0.8839 0.8832

TABLE III
DIMENSIONALITY OF LATENT FEATURE VECTOR

# of
dimensionality

8 16 32 48 64

AUC on dataset1 0.764 0.825 0.8679 0.857 0.834

AUC on dataset2 0.8745 0.8796 0.8861 0.8812 0.8756

TABLE IV
THE EFFECT OF λ

λ 0.1 0.01 0.001 0.002 0.003 0.005 0.007

AUC on dataset1 0.694 0.8312 0.8679 0.862 0.856 0.853 0.8496

AUC on dataset2 0.6721 0.7403 0.8861 0.8713 0.8697 0.8566 0.8501

2) Dimensionality of latent feature vector: The relevance of
circRNAs and diseases is produced by latent feature vectors
in the common low-dimensional space. Therefore, the dimen-
sionality of latent feature vectors is vital to the method. It
is determined by the number of last fully connected layers
in the projection layers. We perform the cross validation and
grid search for the optimal dimension range from 8 to 64.
We choose 32 as the default number which yields the highest
accuracy. The results are shown in Table III.

3) The effect of λ: In Equation (11), the parameter λ
is utilized to weight the binary cross-entropy loss and the
regularization term. It can alleviate the overfitting problem. We
perform the cross validation and grid search for the optimal
dimension range from 0.001 to 0.1. We choose 0.001 as default
number which yields the highest accuracy. The results are
shown in Table IV.

C. Comparison of methods

1) Accuracy Comparison: To measure the performance
of prediction, we compare DMFCDA with five the-state-
of-art computational methods on two datasets: iCircDA-MF
[24], MRLDC [25], DWNN-RLS [17], KATZHCDA [15] and
PWCDA [16]. Fig. 2(a) displays that the ROC curves of
DMFCDA (red), iCircDA-MF (black), MRLDC (magenta),
DWNN-RLS (blue), KATZHCDA (cyan) and PWCDA (green)
on dataset1 obtained with LOOCV. DMFCDA achieves an
AUC value of 0.8679, which performs better than others
(iCircDA-MF 0.8464, MRLDC 0.8116, DWNN-RLS 0.8307,
KATZHCDA 0.7736, PWCDA 0.7083). It means that DMFC-
DA can provide more accurate prediction than others. From
Fig. 2(b), DMFCDA obtains higher percentage of correct-
ly retrieved associations than others in top 5, 10, 20, 30,
40 and 50 with LOOCV. It signifies that DMFCDA gives
more accuracy than others. Fig. 3(a) displays that DMFCDA
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Fig. 2. Comparison of predicting methods on dataset1. (a) Performance of all
methods in terms of ROC curve using LOOCV. (b) Percentage of correctly
retrieved associations in various top rank in LOOCV.
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Fig. 3. Comparison of predicting methods on dataset1. (a) Performance of
all methods in terms of ROC curve using 5-CV. (b) Percentage of correctly
retrieved associations in various top rank in 5-CV.

achieves an AUC value of 0.8412, which outperforms others
(iCircDA-MF 0.8250, MRLDC 0.7665, DWNN-RLS 0.8024,
KATZHCDA 0.7282, PWCDA 0.6699) on dataset1 with 5-
CV. Fig. 3(b) presents that DMFCDA can retrieve more true
associations than others on dataset1 with 5-CV. Fig. 4(a) shows
that the ROC curves on dataset2 with LOOCV, DMFCDA
with an AUC value of 0.8861 outperforms other methods
(iCircDA-MF 0.8582, MRLDC 0.8251, DWNN-RLS 0.8454,
KATZHCDA 0.7881, PWCDA 0.7171). To further assess the
effectiveness of DMCLDA, we conduct the experiments in
comparing the percentage of correctly retrieved associations
in various top ranks. It is obviously found that DMFCDA
outperforms than others on datset2 with higher percentage of
correctly retrieved associations in top 5, 10, 20, 30, 40 and 50
shown in Fig. 4(b). Fig. 5(a) reveals that DMFCDA with an
AUC value of 0.8588 performs better than others (iCircDA-MF
0.8354, MRLDC 0.8010, DWNN-RLS 0.8180, KATZHCDA
0.7752, PWCDA 0.7036). From Fig. 5(b), DMFCDA provides
higher percentage of correctly retrieved associations.

In addition, we replace the traditional cosine similarity
approximation method with multi-layer neural networks to
be general. In order to test the validity of the change, we
add a comparison with the method DMF that utilizes cosine
similarity measurement [32]. The details of numeric compar-
ison are shown in Table V. We can see that DMFCDA is
more stable with lowest standard deviations. It is worth noting
that our method has improved the accuracy of prediction. In
summary, DMFCDA achieves more accurate prediction than
other methods.

2) Statistical Comparison: To statistically evaluate the
quality of the model, we make use of the Friedman test to
detect the significant difference and Nemenyi post-hoc to find
which pairs are significantly different [43]. Specifically, we
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Fig. 4. Comparison of predicting methods on dataset2. (a) Performance of all
methods in terms of ROC curve using LOOCV. (b) Percentage of correctly
retrieved associations in various top rank in LOOCV.
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Fig. 5. Comparison of predicting methods on dataset2. (a) Performance of
all methods in terms of ROC curve using 5-CV. (b) Percentage of correctly
retrieved associations in various top rank in 5-CV.

TABLE V
COMPARISON WITH OTHER METHODS IN LOOCV AND 5-CV

Comparison Methods
LOOCV 5-CV

dataset1 dataset2 dataset1 dataset2

DMFCDA 0.8679 0.8861 0.8412±0.017 0.8588±0.008

DMF 0.8510 0.8681 0.8300±0.029 0.8411±0.019

iCircDA-MF 0.8464 0.8582 0.8250±0.046 0.8354±0.026

MRLDC 0.8116 0.8251 0.7665±0.044 0.8011±0.039

DWNN-RLS 0.8307 0.8454 0.8024±0.051 0.8180±0.044

KATZHCDA 0.7736 0.7881 0.7282±0.068 0.7752±0.057

PWCDA 0.7083 0.7171 0.6699±0.074 0.7036±0.062

randomly select parts of the positive samples as test samples
and utilize the optimized models to calculate their values.
For the results, we use statistical methods to find significant
differences. The statistic for Friedman test that is a non-
parametric analysis of variance is a Chi-square with 5 (number
of methods -1) degrees of freedom. If the Chi-square is bigger
than 11.07 (the p-value is 0.05), there is a significant difference
among methods. Then, we use Nemenyi post-hoc to determine
which pairs of models are significantly different with the
critical distance (CD) as a standard,

CD = qα

√
k(k + 1)

6M
(14)

where qα is a fixed critical value 2.85 while α = 0.05, k
is the degrees of freedom and M is the number of data sets.
The value of CD is 3.65 considered as the significance level.
For dataset1, the value of Chi-square of Friedman is 21.78
bigger than the threshold of 11.07, which means that there
is a significant difference. From Table VI, we can see that
the critical distances between DMFCDA and other methods
are bigger than 3.65, indicating that DMFCDA is significantly

different from others. For dataset2, the value of Chi-square of
Friedman is 24.53 bigger than the threshold of 11.07, which
means that there is a significant difference. From Table VII,
we can see that the critical distances between DMFCDA and
other methods are bigger than 3.65, indicating that DMFCDA
is significantly different from others.

TABLE VI
CRITICAL DISTANCE ON DATASET1

DMFCDA iCircDA-
MF

MRLDC DWNN-
RLS

KATZHCDA PWCDA

DMFCDA NA 4.71 4.90 5.37 6.80 7.14

iCircDA-
MF

4.71 NA 1.75 2.35 4.21 4.62

MRLDC 4.90 1.75 NA 3.43 4.02 5.17

DWNN-
RLS

5.37 2.35 3.43 NA 5.63 5.3

KATZHCDA 6.80 4.21 4.02 5.63 NA 1.06

PWCDA 7.14 4.62 5.17 5.3 1.06 NA

TABLE VII
CRITICAL DISTANCE ON DATASET2

DMFCDA iCircDA-
MF

MRLDC DWNN-
RLS

KATZHCDA PWCDA

DMFCDA NA 3.71 4.20 4.58 5.34 6.83

iCircDA-
MF

3.71 NA 1.95 1.89 4.74 4.83

MRLDC 4.20 1.95 NA 3.63 4.41 5.34

DWNN-
RLS

4.58 1.89 3.63 NA 5.12 4,75

KATZHCDA 5.34 4.74 4.41 5.12 NA 1.27

PWCDA 6.83 4.83 5.34 4.75 1.27 NA

D. Validation across datasets

In order to evaluate the effectiveness of DMFCDA, we
perform prediction on dataset1 and verify the predicted results
with the experimentally validated associations in dataset2.
Owing to differences in the recorded circRNAs and diseases
between two datasets, the predicted associations whose ends
existing in both datasets can be validated. There are 41 added
associations in dataset2 that meet the condition. DMFCDA can
predict 32 experimentally validated associations with dataset1.
The validated results in Table VIII show DMFCDA has the
potential to provide the accurate prediction.

E. Case studies

To illustrate the capability of DMFCDA, we conduct case
studies on dataset2. We fed the model with the known asso-
ciations as training samples to predict potential associations
for colorectal cancer, hepatocellular carcinoma and lung can-
cer. We then sorted the predicted associations according to
calculated possibilities. Top-10 ranking results are manually
validated by mining existing literatures. If the predicted as-
sociations are confirmed in the existing literature, we provide
the corresponding reference. In the same way, we get all the
result lists.

Colorectal cancer is the second leading cause of cancer
death [44]. It is attractive to assure associations between
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TABLE VIII
THE DETAILS OF VALIDATION ON DATASET2

Added associations meet the condition in Dataset2 Validated
CircRNAs Diseases

1 hsa circ 0000520 stomach cancer YES
2 hsa circ 0001727 stomach cancer YES
3 hsa circ 100782 non-small cell lung

carcinoma
YES

4 hsa circ 0082582 non-small cell lung
carcinoma

YES

5 hsa circ 0061265 liver cancer YES
6 hsa circ 0000096 colorectal cancer YES
7 hsa circ 0023404 urinary bladder

cancer
YES

8 hsa circ 0001313 colorectal cancer YES
9 hsa circ 0004771 stomach cancer YES
10 hsa circ 0072088 hepatocellular

carcinoma
YES

11 hsa circ 0001006 stomach cancer YES
12 hsa circ 0003221 urinary bladder

cancer
YES

13 hsa circ 0041103 stomach cancer YES
14 hsa circ 103595 cancer YES
15 hsa circ 0000437 hypertension NO
16 hsa circ 0000437 stomach cancer YES
17 hsa circ 0075829 stomach cancer YES
18 hsa circ 0000745 colon cancer YES
19 circ-ZFR lung cancer YES
20 hsa circ 0004712 Triple Negative

Breast Neoplasms
NO

21 hsa circ 0003570 stomach cancer NO
22 hsa circ 0000284 cancer YES
23 hsa circ 0000284 urinary bladder

cancer
YES

24 hsa circ 0000284 colon cancer YES
25 hsa circ 0001451 esophageal cancer NO
26 CDR1-AS cancer YES
27 CDR1-AS cholangiocarcinoma YES
28 hsa circ 0067934 stomach cancer YES
29 hsa circ 0001649 urinary bladder

cancer
YES

30 circ-ITCH bladder carcinoma YES
31 circ-ITCH urinary bladder

cancer
YES

32 hsa circ 0002768 urinary bladder
cancer

YES

33 hsa circ 0004214 cardiovascular
system disease

NO

34 hsa circ 0001821 acute myeloid
leukemia

NO

35 hsa circ 0001821 urinary bladder
cancer

NO

36 hsa circ 0005273 hepatocellular
carcinoma

YES

37 hsa circ 0007158 lung cancer YES
38 hsa circ 0000118 colon cancer YES
39 hsa circ 0000140 colorectal cancer YES
40 circANRIL cardiovascular

system disease
NO

41 hsa circ 0005075 urinary bladder
cancer

NO

circRNAs and colorectal cancer. We check whether 10 most
likely associations between inferred circRNAs and colorectal
cancer are verified by mining existing literatures. The 6
inferred circRNAs in the top-10 rank have been checked,
indicating that associations between them and colorectal can-
cer are verified (Table IX, hsa circ 0001649, 1st, CDR1-
AS, 2nd, hsa circ 0000615, 3rd, hsa circ 0023404, 4th, cir-
cPVT1, 5th, hsa circ 0005075, 10th). The expression level of

TABLE IX
TOP TEN CANDIDATE CIRCRNAS FOR COLORECTAL CANCER

Rank Name of circRNAs References

1 hsa circ 0001649 [45]
2 CDR1-AS [46]
3 hsa circ 0000615 Circad [47]
4 hsa circ 0023404 [48]
5 circPVT1 [49]
6 hsa circ 103809 Unknown
7 hsa circ 0000437 Unknown
8 hsa circ 0003221 Unknown
9 hsa circ 103595 Unknown
10 hsa circ 0005075 [50]

TABLE X
TOP TEN CANDIDATE CIRCRNAS FOR HEPATOCELLULAR CARCINOMA

Rank Name of circRNAs References

1 hsa circ 0001451 Unknown
2 hsa circ 0001821 Unknown
3 hsa circ 0000745 [52]
4 hsa circ 0082582 Unknown
5 hsa circ 0072088 [53]
6 hsa circ 103595 Unknown
7 hsa circ 0000437 Unknown
8 circPTK2 Unknown
9 hsa circ 0000118 MalaCards [54]
10 hsa circ 0002768 [55]

circRNA hsa circ 0001649 is down-regulated in tissue and
serum samples from colorectal cancer patients [45]. CircRNA
CDR1-AS (ciRS-7) is significantly up-regulated in colorectal
cancer tissues. Its over-expression is related to poor patient
survival [46]. The association between hsa circ 0000615 and
colorectal cancer is recorded in a published database Circad
[47]. Knockdown of hsa circ 0023404 significantly promotes
expression level of miR-36, which has effects on suppressing
colorectal cancer [48]. CircRNA circPVT1 is one of top 10
dysregulated circRNAs in colorectal cancer [49]. By activat-
ing Wnt/β-catenin pathway, hsa circ 0005075 acts as tumor-
promotive oncogene in colorectal cancer [50].

With affecting more than 500,000 people, hepatocellu-
lar carcinoma (HCC) is the third leading cause of cancer
deaths. The abnormal expression levels of circRNAs may
be related to the occurrence of hcc [51]. The 5 inferred
circRNAs in the top-10 rank have been verified as shown
in Table X (hsa circ 0000745, 3rd, hsa circ 0072088, 5th,
hsa circ 0000118 9th and hsa circ 0002768 10th). CircR-
NA hsa circ 0000745 is involved in HCC [52]. CircRNA
hsa circ 0072088 associates with miR-620 and restrain the
propagation and aggression of HCC [53]. The association
between hsa circ 0000118 and HCC is recorded in a pub-
lished database MalaCards [54]. By regulating cytoskeleton,
MYLK (hsa circ 0002768) furthers the progression of HCC
to augment epithelial-mesenchymal transition [55].

Lung cancer is one cause of cancer death in both men and
women, with more than 1 million cases diagnosed each year.
It is necessary to discover the associations between circRNAs
and lung cancer. The 4 inferred circRNAs have been validated
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TABLE XI
TOP TEN CANDIDATE CIRCRNAS FOR LUNG CANCER

Rank Name of circRNAs References

1 hsa circ 0000284 [56]
2 hsa circ 0001313 Unknown
3 CDR1-AS [57]
4 hsa circ 0001649 Unknown
5 hsa circ 0001445 Unknown
6 hsa circ 0067934 [58]
7 hsa circ 0061265 Unknown
8 hsa circ 0003221 [59]
9 hsa circ 0041150 Unknown
10 hsa circ 0072088 Unknown

as shown in Table XI (hsa circ 0000284, 1st, CDR1-AS,
3rd, hsa circ 0067934, 6th, hsa circ 0003221, 8th). CircRNA
hsa circ 0000284 (circHIPK3) functions as an endogenous
miR-338-3p sponge by regulating FMT and inhibits miR-338-
3p activity, which is related to non-small cell lung cancer
by targeting IRS3 [56]. The expression level of CDR1-AS
is robustly increased with the progression of non-small-cell
lung cancer by down-regulating miR-7 [57]. Over-expression
of hsa circ 0067934 promotes proliferation and tumorigenesis
of lung adenocarcinoma in related tissues [58]. In non-small-
cell lung cancer, circRNA hsa circ 0003221 (circPTK2) in-
hibits TGF-β-induced epithelial-mesenchymal transition and
metastasis [59].

Nevertheless, there is not enough experimentally validated
associations to be used for training the model. What’s worse,
the lack of sufficient knowledge impedes the subsequent
study and investigation of all predicted associations. Howev-
er, DMFCDA can provide the accurate prediction from the
experimental results. It means that deep matrix factorization
grasp the complex structure of data and is powerful to infer
associations.

IV. CONCLUSION

Acting as regulators of transcription, intermediates in RNA
processing reactions, and miRNA sponges, circRNAs take
in various biological processes. Dyregulation and mutation
of circRNAs may lead to diseases. Identifying associations
between circRNAs and diseases is helpful in disease diagnosis.
However, there are few associations that have been validated.
It is a challenge to infer potential associations. Traditional
matrix factorization models force vectors of circRNAs and
diseases to map to a common space, and approximate as-
sociations with the inner product. It is hard to learn latent
representations and grasp complex structures of data. In this
study, we propose a deep matrix factorization to recommend
circRNAs for queried diseases. DMFCDA utilizes a projection
layer to learn representations, and multi-layer neural networks
to capture non-linear associations. So complex that the process
of disease is related to multiple biomolecules. The deep
matrix factorization methods have been applied in the related
field. For miRNA-disease, Li et al. utilizes a neural inductive
matrix completion method with a graph convolutional network
to predict miRNA-disease associations [60]. For lncRNA-
disease, Hu et al. proposes a method combing traditional

matrix factorization and deep learning to predict lncRNA-
disease associations [61]. All the methods improve accura-
cy by integrating miRNA-related and lncRNA-related source
data. Related biological data to miRNA and lncRNA can
assist in predicting biomolecular associations. In contrast to
circRNAs, miRNA and lncRNA are linear non-coding RNA.
There is limited biological information for circRNAs due to its
short-term study. DMFCDA makes use of explicit and implicit
feedback, and feeds the neural network with raw vectors from
interaction profiles instead of random initialization. Compared
with state-of-the-art methods, DMFCDA performs outstanding
according to AUC value with both LOOCV and five-fold
cross validation. Moreover, DMFCDA outperforms the-state-
of-art methods in the percentage of correctly retrieved true
associations in various top ranks. DMFCDA provides accurate
recommendation in the case study.

However, some improvements should be made in the future.
Firstly, more and more biological information are useful for
predicting associations with the development of techniques.
DMFCDA could integrate more biological information to learn
more data-consistent representation. Second, linear feature
vectors could offer beneficial feature representation. Com-
bining linear and non-linear feature vectors may provide a
way to boost the performance. Third, the attention mechanism
may be incorporated to focus important stuffs and ignore
or diminish others. We would boost the framework to learn
feature representation and get accurate prediction.
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